
�Ѵa�orm as a �ro7�ct

�r�an
inster
and ��stin $_omsen

42  |  THE DEVOPS ENTERPRISE JOURNAL SPRING 2023

Author
Bryan Finster
Value Stream Architect,
Defense Unicorns

Justin Thomsen
Group Technical Product
Manager - Developer
Experience, John Deere

Iwas having a conversation recently with Andrew Clay Shafer about common mis-
understandings we see around developer experience and the struggles organiza-

tions have with developer platforms. I suggested that if we treated platforms like
real products, there might be better outcomes. Andrew disagreed. He pointed out
an obvious di!erence between internal tools and products: A good product gener-
ates income. "e best you can hope for from a platform is that it reduces the cost of
building good products. However, to get to that best-case outcome from a platform,
we need to operate it with the same mindset that good products have: empathy for
the users and their problems.

Improving the #ow of so$ware delivery is a complex problem. People, pro-
cesses, and tools are all part of an integrated system, and ignoring that system view
yields poor results. Instead, we must use a holistic approach that impacts every-
thing we do. Dana Finster and I gave a talk at the 2022 DevOps Enterprise Summit
titled “"e Rise and Fall of DevOps.” Our presentation focused on behaviors we’ve
seen that drive success or failure and illustrated that those outcomes could be pre-
dicted by how e!ectively an organization forges a robust DevOps tool chain:

One critical link in the tool chain is e!ec-
tive platforms that focus on developer expe-
rience and enable teams to deliver with less
e!ort. However, many organizations we’ve
spoken to struggle with this.

For example, “you build it, you run it” is
very o$en misunderstood to mean that a team
should build and operate both their application
and the tools used to deliver it. "is increases
the cognitive load on the team and causes tool
fragmentation that makes onboarding and
implementing organizational controls exceed-
ingly di%cult. Imagine attempting to automate
security and compliance controls in dozens
of local platforms. Worse, imagine deciding it
was too hard and not automating those.

On the other end of the spectrum, we
have a “platform as a service ticket” where the

“DevOps team” manages the platform and all con&gurations. "ere may be a single
set of tools or several, but the development teams have no control over their deliv-
ery #ow and any changes to improve their quality gate require creating a service
request for a “DevOps” to ful&ll. "e extra drag created by that hand o! disincen-

Mission

DevOps Toolchain

Alignment

Topology

Platform

Quality

Education

Trust

Figure 1: DevOps Toolchain

PLATFORM AS A PRODUCT  |  43

tivizes continuous quality improvement behavior. It also requires that the number of people supporting
the platform grows as adoption grows.

Neither of these methods helps an organization improve delivery. If we want to leverage the advan-
tages that platform engineering can bring, we need to deliver solutions created by people who under-
stand and empathize with the delivery challenges.

Our journey at John Deere is very similar to what Bryan describes here. Bryan and I have collabo-
rated on creating our strategy and plan, learning alongside each other to re!ne our paths forward.
Our massive digital transformation has a focus on shi"ing le", which surfaces hurdles with respect
to technical skills and the culture of DevOps. We’ll share a bit more about how we overcame some
of these hurdles, and which ones we are still working through.

—Justin #omsen: Group Product Manager—Developer Experience Platform at John Deere

A Journey to Agility

“We are uncovering better ways of developing so"ware . . . ”
—Manifesto for Agile So"ware Development

In 2015, we began a pilot of continuous delivery at Walmart. We had a large legacy system supported
by hundreds of developers deploying to scores of distribution centers in multiple countries. We pushed
three or four releases annually, each requiring planned 24/7 support for a couple of weeks and heroic
e!orts to stabilize. Our leadership challenged us to &nd a way to deliver every two weeks. We assem-
bled a tiger team of senior engineers, studied the book Continuous Delivery by Jez Humble and Dave
Farley, and decided daily delivery was a better goal. Why daily? Because smaller batches of change fail in
smaller ways and nothing is more e!ective and unconvering waste and delivery pain.

To achieve this, we couldn’t simply tell teams to deliver more frequently. We needed to change
everything. Our team structure, organized around feature delivery rather than business capabilities,
was continuing to degrade the application architecture. We also had no experience with the continuous
integration work#ow that is fundamental to continuous delivery (CD). We presented leadership with a
new team structure aligned with business domains and a plan to begin rearchitecting for delivery. We
created a small platform team to build self-service and opinionated delivery pipelines that aligned with
the principles of CD. While the new product teams solved the challenges of continuous integration (CI)
and CD, they provided feedback to the platform team to improve the pipeline defaults. "is allowed the
teams to focus on their domain capabilities rather than how to deliver them while we embedded the
good patterns we learned into the platform to help future teams. Solving all of the problems of delivering
nonbreaking changes several times a day rapidly grew engineering skills on those teams. It also had the

44  |  THE DEVOPS ENTERPRISE JOURNAL SPRING 2023

unexpected bene&t of improving morale. Teams love seeing their work used, and those pilot teams could
see that several times per week rather than three times a year. We had improved mean time to dopamine.

CD: The Lever, Not the Goal

Our experience showed that focusing on solving the problem of “why can’t we deliver working solutions
daily” was the most e!ective method for driving improvement. We implemented a strategy to use CD
as the primary method to scale the same engineering and business improvements across the enterprise.
"e challenge—and the strength—of this strategy is that CD is more than tooling. It also requires a spe-
ci&c work#ow and mindset to deliver optimum results. One way of doing this is to create a large coach-
ing organization and perform training with every team. However, even if enough quali&ed people could
be found to work with teams, that method creates unsustainable overhead for any large organization.
We needed to apply force-multiplying solutions to help teams self-improve. To that end, we created a
centralized delivery platform organization to lead that strategy.

Centralized Platform
Standardizing tools is a double-edged sword that can result in poor outcomes if done incorrectly. If we
impose too many restrictions or opinions on the platform, we can strangle innovation or force people
to work around the platform to get the work done. Done correctly, we can generate economies of scale.
Having one set of tools for everyone has obvious bene&ts. Using fewer tools means lower operations
costs and less integration e!ort. It also means onboarding or changing between teams is easier. Further,
it allows us to automate standards, policies, and security into a single platform and incentivize change.

“#e central idea is to create an environment where doing the right thing is as easy as possible.
Much of the battle of building better habits comes down to !nding ways to reduce the friction asso-
ciated with our good habits and increase the friction associated with our bad ones.”

—James Clear, Atomic Habits*

Empathy, Not Mandates
When delivering any solution, the last thing we want to do is alienate our potential users. "e most
e!ective way to alienate internal users is to force them to change. Even if our solution is better, forcing
them to switch would burn any goodwill we may have received from voluntary adoption. "at goodwill
is very important when we stumble early on, as every new solution does. Instead, we wanted to build
solutions that enticed them.

* James Clear, Atomic Habits (New York: Avery, 2018) 147.

PLATFORM AS A PRODUCT  |  45

We knew that a global platform was the enterprise’s goal and that using it would be mandated in
the future. However, if we acted that way, we would drive away users with both poor interactions and
poor solutions. We wanted adoption to be a pull, not a push. To that end, we focused on behaving with
empathy for the problems our users had. "at empathy and user-centric focus didn’t end with devel-
opers. An improved developer experience does not mean we optimize only to reduce the time or e!ort
required to deliver code to production. It means we make it harder for teams to make errors and easier
for those teams to operate their products. Doing this means working with all of the other disciplines that
surround coding and helping to make their jobs easier as well. We collaborated with the Security and
Compliance areas to embed their concerns into the platform so that every change could be validated
against their policies automatically. "is took disciplined change management on our part. You cannot
apply strict automated validation to applications that only used manual security and compliance pro-
cesses in the past. We’ll cover this more later. "e result of this work was that teams were not required to
use our solution. However, they would need to work very hard to meet the organization’s nonnegotiables
with another delivery solution. With ours, it just happened.

Figure 2: Scaling CD to Walmart

As we established the developer experience product family, we knew we did not want our emphasis
to be on enforcing tools. We wanted to treat the developer experience platform as a product, not
a means to tell developers how to deliver so"ware. We chose to follow Bryan’s pattern of creating
opinions and making those the easiest way to do the right thing. We created “as a service” products

concord
Dependency

Checks

Security
Scans

Pre-Release Release

Deploy

Performance/
Integration Testing

Compliance
Gate Check

PASS 2

Validation/
Acceptance Testing

proximity

l per
“As a developer it’s almost transparent . . .

It goes to git, it’s built, and magic happens.”

46  |  THE DEVOPS ENTERPRISE JOURNAL SPRING 2023

for CI/CD, observability, API integrations, cloud, and containers. #e platform opinions are formed
around things such as trunk-based development, ephemeral workloads, loosely coupled architec-
ture, zero trust security, and continuous delivery.

—Justin #omsen: Group Product Manager—Developer Experience Platform at John Deere

Scope and Organization
Another problem to consider is how to avoid solving the wrong problems. As we discussed earlier, inter-
nal platforms do not generate income. Our value proposition is lowering costs elsewhere for other value
streams. For a platform with enterprise funding, it’s easy to fall into the trap of “"at would be neat.
Let’s solve that problem too!” In the process, we can become top-heavy with features that solve phantom
problems or only help a small fraction of the organization. “Wouldn’t it be cool if we had a developer
portal with drag-and-drop service creation?” It might, but is there a need? If it does not dramatically
lower the cost of development for a majority of teams, we have only created an ongoing expense for
something that looks good on a conference stage. In this way, we can quickly eliminate our value prop-
osition and spend ourselves out of existence. We need clarity of mission and vision.

We had a clear mission: help drive the organization’s CD strategy. We also had a clear vision: irresist-
ible developer experience. Next, we needed to de&ne our scope and organize for success.

So$ware delivery enablement (SDE) was part of a larger infrastructure organization. Our scope of
responsibility was all of the capabilities from version control to delivery. We would interface with, but not
be responsible for, capabilities such as operational observability and work#ow management solutions.
With a known scope, we leveraged domain-driven design to quickly deliver our goals while remaining
#exible about how we implemented them. We de&ned the discrete capabilities, version control, CI, secu-
rity, artifact versioning, delivery metrics, etc., and organized cross-functional teams around each.

Each team’s product owner was responsible for aligning the team’s road map to the overall platform
goals. Teams were trusted to deliver the capabilities they were responsible for and held accountable for
the outcomes, including operational stability and user experience. By giving this trust, platform lead-
ership established a culture of ownership that fostered innovation and improved user interactions with
each product within the delivery platform.

By organizing around capability domains with the goal of being able to replace underlying infra-
structure without impacting the user experience, we were not locked into early technology choices. We
could, and did, change the tools used to deliver these capabilities.

An Irresistible Developer Experience
Because one of our goals was to spread knowledge of continuous delivery work#ows, the platform
made practices like trunk-based development the easiest way to work and provided feedback in the
form of scores for how well CD was being executed. It also made other work#ows more di%cult, either

PLATFORM AS A PRODUCT  |  47

intentionally or by simply not explicitly supporting them. Using practices such as GitFlow, which were
incompatible with our goals, resulted in increased toil. However, if we eliminated the ability to use other
work#ows entirely, it would prevent adoption for any team that was not already on the path to continu-
ous delivery. We took an approach that allowed teams to trade simplicity for #exibility as needed while
also ensuring that security and compliance could not be avoided. Our abstraction layer over the tools
also allowed us to maintain a consistent user experience while changing tools as our needs changed.

To be e!ective, we needed to avoid the platform-as-a-service-ticket antipattern, so we prioritized
the ability for teams to con&gure their delivery #ows according to the needs of their products. We pro-
vided extensible templates that allowed teams to use simple, declarative commands to con&gure com-
mon tasks such as test coverage reporting. "e base templates exposed those simple commands while
also enforcing data collection, security scans, compliance validation, and business rules. For example,
we could create and enforce rules to block unapproved changes during major sales events. However, if
a team needed more complex behaviors for their speci&c application, they still had the ability to create
scripts for those behaviors since not all twenty-year-old code is architected for continuous delivery pat-
terns. We were also responsive to input from teams using common technologies, but not yet supported.
As an open-source &rst organization, we encouraged inner sourcing. We would happily accept code
submissions to improve our support for those technologies as long as they with the overall mission.

At the beginning of our journey, we had very tool-focused, siloed products before shi"ing to the
opinion-based model Bryan talks about. #is shi" allowed us to create boundaries around what
lives within our scope and what does not. Connecting our various silos together is an ongoing chal-
lenge that we are tackling through a combination of a holistic paved path in a one-click cloud-native
platform and individual building blocks of that path for teams who have already begun their con-
tinuous delivery journey. #is approach makes it easy to do the right thing while allowing $exibility
for teams to do things on their own if they choose to forge their own path.

—Justin #omsen: Group Product Manager—Developer Experience Platform at John Deere

Speed with Safety Nets
Focusing on a good developer experience does not mean we ignore our responsibilities to keep the
enterprise safe. It means we make keeping the enterprise safe as easy as possible by embedding secu-
rity and policies into the platform. However, if the teams’ previous delivery solutions relied on manual
security veri&cation, it’s exceedingly unlikely they met our desired security pro&le. If we simply blocked
the delivery of their current applications until they improved their security, then our platform would
never be adopted for anything other than green&eld development. We needed to enable them to keep
the business running while adopting our platform, but also increase our security pro&le and automate
compliance.

48  |  THE DEVOPS ENTERPRISE JOURNAL SPRING 2023

“Poka-yoke translates as ‘error proo!ng’ or ‘avoiding error.’ One of the techniques of poka-yoke is to
add simple !xtures, jigs, or devices to constrain the operations so that they are correct.”

—Don Norman, !e Design of Everyday !ings*

To make it easy for teams to deliver secure solutions, we needed to make it continuously more dif-
&cult to be insecure. We also needed to do it with empathy for the delivery goals of the teams. "e easy
thing would be to simply implement the &nal standards and tell the teams to pick up the pieces, as most
of their pipelines went red. “Why didn’t you follow the standards before? Suck it up.”

To keep the enterprise safe, serve the needs of the business, and help the teams, there needs to be a
more reasonable approach. Whenever we do anything that may cause disruption or add friction to their
delivery #ow, we need to over communicate. Before implementing a new security or compliance gate,
we broadcasted on Slack, email, and anywhere else we knew teams might see the information that a new
mandatory gate was going to be implemented. A$er a month or so of broadcasting, we implemented
the new pipeline gate as a warning message in their pipelines that included information about when the
warning would be switched to an error that would halt their pipelines. Only a$er that did we block non-
compliant builds. Even then, we worked with areas with legacy applications that could not migrate fast
enough to provide an exception while helping them come into compliance. In this way, we continuously
increased the security and compliance pro&le of every system that used our platform.

Hundreds of delivery teams accelerating change into the system brings concern that teams may be
missing security, compliance, and audit requirements. In 2023, we are focused on creating a mini-
mum viable commit to production work$ow. #is aligns to both what Bryan mentions and what we
heard from many others at DOES 2022. Governance as a service allows teams to continue deliver-
ing more o"en and ensures they are doing it in a safe way. #e service will cover requirements for
compliance, security, and audit while helping to drive cloud cost savings.

—Justin #omsen: Group Product Manager—Developer Experience Platform at John Deere

Making Metrics Matter
Our explicit goal was to transform how the enterprise worked. "ere was a push from the CTO for that
change where he challenged every team to solve the problem of delivering to production daily. "is was
not about the speed of delivery—it was a challenge to solve the engineering and communication prob-
lems that prevented daily delivery to improve the entire organization. However, you cannot improve if
you do not know where you are and how to get to where you’re going. Metrics reporting was an import-
ant part of our platform strategy and one of the earliest capabilities we delivered.

"e delivery metrics views had two important uses. First, it gave teams visibility into the status of
their pipelines. A single view of pipeline health is crucial to a team’s productivity because a broken pipe-

* Don Norman, !e Design of Everyday !ings (New York: Basic Books, 2013) 233.

PLATFORM AS A PRODUCT  |  49

line cannot provide quality feedback, so &xing a broken pipeline is the highest priority for a team. Sec-
ond, the metrics showed the teams how well they executed CD behaviors relative to what “good” looked
like. For example, if you as a developer used trunk-based development and integrated code at least daily
on average, then you got &ve stars for source management. We continuously reviewed the behaviors the
scoring caused to guard against perverse incentives. We would show a balanced set of metrics so that
when gaming the metrics occurred, they were gamed in favor of our goals. When we saw undesired
outcomes, we would adjust how we displayed the information or, in some cases, use education to help
prevent management from using the scores to compare or blame teams.

We would frequently receive requests to adjust the scoring to provide good scores for things like
delivering once per month because “our users don’t want changes more frequently than that.” Since this
didn’t align with the organization’s improvement goals, we referred them to other resources we o!ered
to help them migrate to CD. More on this later.

Building the “Easy Button”

Here is my source code
Run it in the cloud for me

I do not care how
—Onsi Falhouri, “Pivotal Cloud Foundry Overview”*

Our next task was to implement a multi-tenant cloud solution that would let us deploy container-
ized workloads to the public cloud, our private cloud, and the data centers that reside in every store and
distribution center. We wanted a solution where the teams did not need to know or care where their
applications were running, and we wanted it to be even easier to use. A$er all, platform engineering
is about delivering products to development teams that allow them to focus on the problems they are
trying to solve instead of solving the problems of how to deliver the solution.

In 2019, we released the Walmart Cloud Native Platform (WCNP). Shi$ing from deploying onto
virtual machines to deploying containers in Kubernetes would usually require every team to slow down
and learn new technologies and make costly mistakes along the way. We wanted to make that transition
easier. With WCNP, if you wanted to deploy a React application, simply tell WCNP to deliver a React
application owned by your team and where to send alerts with ChatOps. WCNP would handle every-
thing else. It con&gured the container, logging, monitoring, and alerting, and assigned a domain name.
From then on, all interaction could be handled with ChatOps, including approving delivery to produc-
tion, if not con&gured for continuous deployment.

Teams did not need to learn how to build e%cient containers or anything about Kubernetes to
deliver solutions. "e platform hid that complexity from them. If they needed more complex pipelines,

* Onsi Fakhouri, “Pivotal Cloud Foundry Overview,” 2016, https://youtu.be/7APZD0me1nU.

50  |  THE DEVOPS ENTERPRISE JOURNAL SPRING 2023

they had the ability to build their own containers, and WCNP would handle just the delivery and oper-
ational monitoring setup. Again, this gave teams the option to handle more complexity if needed. Feed-
back from product teams was overwhelmingly positive. "e developer experience also enabled teams
to run quick, disposable experiments with almost no e!ort. Lowering the cost of change is critical to
innovation.

The Power of Branding and Culture

Building a brand is important to building awareness that helps increase adoption. People respond to
branding and logos. If we want to spread the word that we have a better solution, then naming some-
thing “"e Continuous Integration Server” looks like we aren’t seriously invested in making it better for
them. We spent time building brands. Every product within the platform had a brand and logo. Each
had a distinct mission statement that mirrored Walmart’s mission.

Figure 3: Example Brand logo
Source: https://concord.walmartlabs.com/index.html

Not only did this drive external awareness, but it also increased morale on the product teams. It
gave every team an identity that increased mission awareness and pride in their products. Stickers have
power. Ours could be found on the laptops of some top developers, and our brand was recognized.

It’s not enough to talk the talk; we also tried to walk the walk daily. Continuous delivery is more than
tools; it’s a culture. It requires a commitment to trust and sharing to improve delivery performance, and
we tried to exemplify that culture. For example, if we had an incident that a!ected users, we didn’t hide
this or make excuses. We would broadcast on Slack that there was a problem and give frequent updates
on the status. A$er the incident was resolved, the team or teams who owned the issues would gather
and write a postmortem. "ose would be published publicly and announced just as loudly as the issue
announcement. “"is is what we learned. "is is what we are improving to make the product better.” We
also used the tools we were building to help build the tools. For example, Concord was used to deploy
changes to Concord.

PLATFORM AS A PRODUCT  |  51

Taking Documentation Seriously

Supplying tools that reduce the complexity of delivery for our users is not enough. Good documentation
not only improves the user experience but also lowers the cost of daily operations by reducing the level of
one-on-one support. We took a disciplined approach to this by creating a team to curate our docs and cre-
ate self-service training material for the platform. "e word “team” may be overstating things somewhat.
For the &rst year or so, the team consisted of one person, a skilled engineer who was also skilled at creat-
ing e!ective training material. Later, the team doubled in size to two. "e team would record live classes
on how to use the new tools while emphasizing CD behaviors. New classes would be held to update the
recorded training as new features were released. "e team also curated the platform’s documentation web-
site. However, they were not responsible for creating the documentation. Each product team was respon-
sible for submitting updates and improvements as the platform matured. "e documentation and training
team would review for style and content and accept the change if it met their standards.

Even if documentation isn’t ignored, one of the common problems is maintaining it. O$en it is
written once and then quickly becomes obsolete or little e!ort is spent on making things easy to &nd.
Either scenario increases operational costs as the volume of hands-on user support needed to compen-
sate grows with adoption. We intended to run as lean as possible and to protect our time for growing
platform capabilities, so training and documentation were our &rst line of defense for user support.

Product Support
When operating any product, there will be a need for user support. Especially for internal platforms that
are funded by the money they help other teams save, keeping operational costs low is essential. As one
of our users, if you asked for help, the #ow worked this way:

Figure 4: Product Support Work Flow Example

Customer
Question via

ChatOps

Did they
take the
training?

Here is the
documentation

that covers
this question

Alert the
relevant

product team

Did that
answer the
question?

Open an
issue to work

with the
customer

Update the
documentation

Awesome

Direct them to
the training

Application
Defect? Y

Y

Y Y

N

N

N

52  |  THE DEVOPS ENTERPRISE JOURNAL SPRING 2023

"e point of entry for help with any of the platform tools was not a request to open a ticket. "at
results in a terrible user experience. Instead, the entry point was through ChatOps. Questions were
asked and answered in real-time and publicly whenever possible. "is not only improved the developer
experience but also helped others in the channel who did not ask the question. By focusing on making
the documentation discoverable and using it as the primary way to answer questions, we were contin-
uously testing its accuracy and improving it. By 2020, the platform supported delivery pipelines for
the vast majority of approximately 1,500 development teams, or about 18,500 developers. Globally, the
platform support team consisted of eight people divided between the US and India to maintain twen-
ty-four-hour coverage for the platform. Sometimes the support questions would be about continuous
delivery methods of working. In those cases, the platform support would respond, “Have you spoken to
the Dojo team?”

Platform as an Agent of Improvement

Gami&cation of delivery metrics was one of the &rst capabilities we built. As you may imagine, adding
gami&cation sparked many conversations with teams as they adopted the platform. "e goal was not to
hold teams accountable but to help teams understand the di!erence between how they were working
and the work#ow we were helping to achieve. As the number of requests for “How can we improve our
scores?” increased, we organized a team dedicated to helping them learn continuous delivery.

In 2015, Target Stores* announced their DevOps Dojo and the impact it was having on their ability
to improve delivery. "is was quickly followed by Capital One, Verizon, 3M, and many other Fortune
100 companies creating their own Dojos. "e Dojos used immersive learning techniques, including a
strategy of “let’s use your work to learn how to do your work better,” emphasizing shrinking feedback
loops to uncover pain.

Because of the mission we were on, our Dojo was not focused on general improvement. Ours was
targeted at helping developers solve the problem of daily production delivery in their context. We did
not start with agile process coaching, we started with engineering. We built a team of senior developers
with proven technical leadership ability and experience executing daily delivery. We had gone on the
journey on our previous teams, knew where the pitfalls were, and knew how to guide to better outcomes.
We started in 2018 with two people. By 2019, the team had reached its maximum size of &ve. Rather
than waiting for a large space to bring teams to, which would never happen in our environment, we
focused on things that multiplied our impact.

We did the math: if we could &nd &$y quali&ed people to work directly with teams, it would take us
eleven years to help every team. We had to &nd other ways. While we did many six-week engagements

* Heather Mickman & Ross Clanton, “(Re)building an Engineering Culture: DevOps at Target,” Presentation at DevOps
Enterprise Summit, 2015. https://www.youtube.com/watch?v=7s-VbB1fG5o.

https://www.youtube.com/watch?v=7s-VbB1fG5o

PLATFORM AS A PRODUCT  |  53

pairing directly with a team to help them, our goal was to use the knowledge we gained by helping
them to document and share the common problems teams had. As with the other product teams, we
leveraged our documentation. We created easy-to-consume playbooks that covered every challenge we
saw teams struggle with: work decomposition, testing patterns, application architecture, team architec-
ture, CI work#ows, etc. We began working on a new metrics view that would leverage pipeline delivery
metrics to automatically suggest playbooks to help improvement, which we called “coaching as a ser-
vice.” We also put a plan in place to train other leads across the enterprise on how to do what we were
doing. Because of its close alignment with how we were already working, we began leveraging Gary
Gruver’s “Engineering the Digital Transformation” certi&cation program to train EDT White Belts and
then work on cohorts of Green Belts to scale our methods horizontally rather than trying to grow our
organization. Our mission was to make our team obsolete so we could return to product development.

We not only helped teams learn how to use the platform e!ectively but also acted as eyes and ears for
the area. We asked questions like “What challenges are teams having?” and “What problems could we
solve better, or are we not solving yet?” We also took the stance that we didn’t care if you were using our
platform or not. "e enterprise goal was to drive CD, and we would help in any way we could, including
helping to remove roadblocks that were outside of a team’s control and had nothing to do with the tools
they were using. By 2021, the dojo was an e!ective product for scaling team improvement and a trusted
source of information for better so$ware delivery.

John Deere’s transformation business unit and dojo experience created a solid foundation for the
success of their agile operating model. As we continue our digital transformation, we can build
upon the gains of agile and scrum to drive even further into DevOps and grow our developer expe-
rience platform products. To do this, we realized that to continue to challenge and change our cul-
ture, we have to help teams adopt the platforms we build. In late 2022, we expanded our developer
experience product family to include developer advocacy. #is new area is focused on marketing
the developer experience platform products, providing centralized easy-to-use documentation,
improving the end-to-end developer experience, curating learning paths to grow skills for the plat-
form, and encouraging frequent feedback loops and experimentation.

—Justin #omsen: Group Product Manager—Developer Experience Platform at John Deere

Outcomes

When the So$ware Delivery Enablement organization began, there were multiple version control sys-
tems and technologies. "ere were dozens of competing tools for building and delivering applications.
"e MVP of the platform only handled a couple of simple delivery problems. We used a strategy of
expand-and-contract to move the mission forward. We assumed the operational responsibility (and
costs) for their existing tools, built the capabilities we were missing to support their needs, helped them

54  |  THE DEVOPS ENTERPRISE JOURNAL SPRING 2023

migrate, and shut down their old systems. If some teams were reluctant to move a$er we had migrated
most of the area or were not given the time to work with us, we o!ered to give the operational costs back
to their vice president.

Fast forward four years, and over 80% of the enterprise’s delivery ran through SDE’s platform. Our
tools delivered nearly 10,000 applications to every Walmart environment. With thousands of builds and
thousands of teams being supported around the clock, SDE still operated with an eight-person, tier-one
support team distributed for “follow the sun” operations and a total sta! of around eighty people spread
across the small product teams that made up the platform capabilities. Because most support happened
in public on our Slack channels, o$en questions would be answered by our power users, further light-
ening the load on our teams. We saw this behavior frequently on the Dojo channel, where questions
about good CD work#ows would o$en be answered by engineers in other areas before one of us had the
chance to respond. We always thanked them. Sharing is one of the most important cultural practices for
improving delivery, a$er all.

Be the Platform You’d Want to Use!

Every internal platform is a product; some are just not very good. Many are a bu!et of tools with a frag-
mented experience and no clear goals that provide no safety nets and require extensive knowledge to
use correctly. Others operate with the mindset, “"ese are the approved tools, and you will use them.”

“ . . . a lot of the platforms I come across right now are still in a state of focusing on the SysAdEx…
or the SAdEx as I like to call it.”

—Bryon Kroger*

Bryon isn’t wrong. Platforms optimized for SADEx to make the lives of the people operating the plat-
forms easier will reduce the e!ectiveness of the teams using them. Starting with a user-centric mindset is
critical. However, since many platform organizations grow from infrastructure organizations. It’s uncom-
mon for them to be trained in that focus. If we want to be a useful platform, we must learn that mindset.

Start with the mission. One of my favorite missions is, “People have problems. We should help make
their lives less problematic.” Next, set your sights on a vision and goals that align with your mission:
“Provide an irresistible developer experience to our users to make it easier for them to deliver daily
value. Make security and policy so easy to implement that they are features, not impediments.”

If we start with the right mindset and take product management seriously, we can make a positive
impact on the lives of our users, their customers, and our organization’s success. All of these take invest-
ment, but the cost of doing them is far less than the cost of ignoring the need.

* Bryon Kroger, “I’m reminded of Onsi Fakhouri’s haiku…”, LinkedIn comment, https://bit.ly/SADEx.

https://bit.ly/SADEx

